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Abstract
The correlation functions of an ionic fluid with charge and size asymmetry
are studied within the framework of the random phase approximation. The
results obtained for the charge–charge correlation function demonstrate that
the second-moment Stillinger–Lovett (SL) rule is satisfied away from the gas–
liquid critical point (CP) but not, in general, at the CP. However, in the special
case of a model without size asymmetry the SL rules are satisfied even at the
CP. The expressions for the density–density and charge–density correlation
functions valid far from and close to the CP are obtained explicitly.

In recent years much attention has been focused on an issue of the criticality and phase
transitions in ionic fluids. For reviews of the experimental and theoretical situation, see [1–3].
One of the most widely used theoretical models of Coulomb systems is the so-called ‘restricted
primitive model’ (RPM), in which the ionic fluid is modelled as an electroneutral binary mixture
of charged hard spheres of equal diameter immersed in a structureless dielectric continuum.
Early studies [4] established that the model has a gas–liquid critical point (CP), the location
of which was determined by recent simulations [5–7]. Due to the controversial experimental
findings, the critical behaviour of the RPM has also been under active debate and strong
evidence for an Ising universal class has been found by computer simulation [7, 8] as well as
by a recent theoretical study [9]. More recently, the effects of size and/or charge asymmetry
on the phase diagram have been studied theoretically [10–12] and by simulation [15, 16].

The more relevant issue concerns the behaviour of the two-body charge–chargecorrelation
function G DD(r) near the CP, where the density fluctuations diverge strongly. Recently Aqua
and Fisher [13] using a class of exactly soluble spherical models studied both symmetric and
asymmetric versions of 1:1 ionic models. They showed that in the former case the two-point
charge correlations remain of short range and obey the Stillinger–Lovett (SL) rule near and at
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the critical point. Otherwise they found the divergence of the charge correlation length to be
precisely the same as the divergence of the density correlation length. They also found that
the SL rule fails at criticality.

In this letter we address an issue of the behaviour of the correlation functions of an ionic
fluid far from and near to the CP. For this purpose we consider a charge- and size-asymmetric
continuous model of an ionic fluid. According to [13] the Fourier transform of the charge–
charge correlation function of the model G̃ QQ(k) can be presented as

G̃ QQ(k) � 0 + ξ2
Z,1k2 −

∑

p�2

(−1)pξ
2p
Z,pk2p, (1)

where the first vanishing term results from electroneutrality (zeroth-moment SL condition)
while the second term yields the second-moment SL rule with ξZ,1 = ξD (ξD is the Debye
length). We intend to answer the question of whether the SL rules are satisfied in the cases of
both asymmetrical and symmetrical ionic fluids.

In order to fix our notations we first consider the case of a fluid made of two species
α = 1, 2. In the grand-canonical (GC) ensemble an equilibrium state is characterized by
the inverse temperature β = 1/kBT (kB and T are Boltzmann constant and temperature,
respectively) and two dimensionless local chemical potentials να(r) = β(µα −ψα(r)), where
µα is the ordinary chemical potential and ψα(r) is some external field acting on particles.
Recall that the GC partition function �[ν1, ν2] is a log-convex functional of the να . The
truncated two-body correlation functions are defined as

Gαβ [ν1, ν2](1, 2) = δ2 ln�[ν1, ν2]

δνα(1)δνβ(2)
. (2)

The Legendre transform of ln� defined as

βA[ρ1, ρ2] = sup
ν1,ν2

{∑

α

〈ρα |να〉 − ln�[ν1, ν2]

}
, (3)

which gives us the free energy. In equation (3) Dirac notations have been used, i.e.

〈ρα |να〉 ≡
∫

	

d3r ρα(r)να(r), (4)

where 	 denotes the volume of the system. βA[ρ1, ρ2] is a convex functional of the local
densities ρα(1) and it is the Legendre transform of ln�[ν1, ν2], i.e.

ln�[ν1, ν2] = sup
ρ1,ρ2

{∑

α

〈ρα|να〉 − βA[ρ1, ρ2]

}
. (5)

βA[ρ1, ρ2] is the generator of direct correlation functions. In particular the two-body direct
correlation functions are defined as

Cαβ [ρ1, ρ2](1, 2) = −δ
2βA[ρ1, ρ2]

δρα(1)δρβ(2)
. (6)

The functions G and C are related by the Ornstein–Zernike (OZ) equation

Cαβ(1, 2)Gβγ (2, 3) = −δαγ δ(1, 3), (7)

where summation and integration over the repeated mute indices are meant.
We now consider the case of ionic mixtures; particles of species α = 1 are supposed to

bear a charge +q and those of species α = 2 bear an opposite charge −Zq (Z > 0). It is
obviously convenient to introduce the total number and charge densities, ρN and ρQ , by the
relations (

ρN

ρQ

)
= M

(
ρ1

ρ2

)
,

(
ρ1

ρ2

)
= M−1

(
ρN

ρQ

)
(8)
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with

M =
(

1 1
1 −Z

)
, M−1 = 1

1 + Z

(
Z 1
1 −1

)
. (9)

For a homogeneous fluid we certainly have the charge neutrality condition ρQ = 〈ρ̂Q〉 = 0
where the hat denotes the microscopic charge density and the brackets 〈· · ·〉 denote a GC
average. The (truncated) correlations of ρN and ρQ will be defined as G AB(1, 2) =
〈ρ̂A(1)ρ̂B(2)〉 − 〈ρ̂A(1)〉〈ρ̂B(2)〉, where A(B) = N, Q.

It follows from equations given above that we can introduce two symmetric matrices of
correlation functions, namely

G =
(

G11 G12

G21 G22

)
, G =

(
G N N G N Q

G QN G QQ

)
(10)

which are related by the matricial equations

G = M−1GM−1 (11)

G = MGM. (12)

Similarly, we introduce the C and the C as

C = MCM (13)

C = M−1CM−1, (14)

in such a way that the form of the OZ equation is preserved, i.e.

C(1, 3)G(3, 2) = −Uδ(1, 2), (15)

where U is the unit matrix.
We are interested in the behaviour of G AB (r) in the critical region at large r or equivalently

at small k in Fourier space. This study will be made in the framework of the random phase
approximation (RPA) defined by the closure relation

C = CHS − β�− β�c. (16)

In equation (16) CHS is the matrix of the direct correlation functions of some reference system
chosen here to be a hard sphere fluid (HS) mixture (with diameters σα , α = 1, 2). The matrix
� is built from short range pair interactions and, finally, �c denotes the matrix of Coulomb
interactions. With these notations, the OZ equation (15) can be rewritten in Fourier space as
(

G̃ N N (k) G̃ N Q(k)
G̃ QN (k) G̃ QQ(k)

)
= −

(
C̃HS

N N (k)− β�̃N N (k) C̃HS
N Q(k)− β�̃N Q(k)

C̃HS
N Q(k)− β�̃N Q(k) C̃HS

QQ(k)− β�̃QQ(k) + 4πβq2

k2

)−1

,

(17)

where

�̃N N (k) = 1

(1 + Z)2
[Z 2�̃11(k) + 2Z�̃12(k) + �̃22(k)] (18)

�̃N Q(k) = 1

(1 + Z)2
[�̃11(k)− 2�̃12(k) + �̃22(k)] (19)

�̃QQ(k) = 1

(1 + Z)2
[Z�̃11(k) + (1 − Z)�̃12(k)− �̃22(k)] (20)

and the tildes mean a Fourier transform.
A general study of the limit k → 0 of equation (16) would be tedious and we make the

following simplifying assumptions.

• The HS will all be of the same diameter σα = σ .
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• We split the potential �̃αβ(k) into two parts, i.e. �̃αβ(k) = �̃R
αβ(k) + �̃A(k), where

�̃R
αβ(k) > 0 denotes the repulsive part and �̃A(k) < 0 denotes the attractive one.

The attractive part �A is necessary to induce a liquid–vapour transition in the RPA
approximation. Since we have considered HSs of equal diameters the repulsive potentials
�̃R
αβ(k) are used to mimic the soft core asymmetric repulsive interactions.

Moreover, at small k, we assume that

�̃R
αβ(k) = �̃R

αβ(0)(1 − (bR
αβk)2) + O(k4) (21)

�̃A(k) = �̃A(0)(1 − (bAk)2) + O(k4), (22)

which implies that

�̃AB(k) = �̃AB(0)(1 − (bABk)2) + O(k4), (23)

where bAB are complicated functions of Z , bR
αβ , bA, �̃R

αβ(0) and �̃A(0), which will not be
displayed here. The bR

αβ can be interpreted as the effective diameters for the ions.
As a consequence of these assumptions we have a simple result

(
G̃ N N (k) G̃ N Q(k)
G̃ N Q(k) G̃ QQ(k)

)
=

( 1
G̃HS(k)

+ β�̃N N (k) β�̃N Q(k)

β�̃N Q(k)
1
ρZ + β�̃QQ(k) + 4πβq2

k2

)−1

, (24)

where G̃HS(k) is the Fourier transform of the truncated two-body correlation function of a
one-component HS fluid at the density ρN . We are now in a position to study equation (24) in
the limit k → 0.

At k = 0 one finds that

G̃ N N (0) = G̃HS(0)

1 + β�̃N N (0)G̃HS(0)
(25)

or

G̃ N N (0) = 1

ν1(ρ) + β�̃N N (0)
, (26)

where ν1(ρ) = ∂νHS/∂ρ.
It is worth noting that if �̃N N (0) > 0, then G̃ N N (0) is regular and there is no critical

point (CP) in this case. If �̃N N (0) < 0, the isotherm compressibility χT = βG̃ N N (0)/ρ2

can diverge, signalling the occurrence of a CP. It turns out [14] that ν1(ρ) is a positive
convex function of the density with a single minimum at ρcσ

3 = 0.248 with a value
ν1,c = ν1(ρc) = 11.115. It follows from this remark that, in the RPA approximation, the
critical density is ρc and that the critical temperature is given by βc�̃N N (0) = −ν1,c. Hence,
along the critical isochore and above Tc, G̃ N N (0) behaves as

G̃ N N (0) = 1

(β − βc)�̃N N (0)
(27)

yielding the critical exponent of compressibility γ = 1 as expected.
Following Aqua and Fisher [13], we can cast the expressions for G̃ N N (k) and G̃ QQ(k) as

G̃ N N (k) = B̃(k)

λ2(k)
+

1 − B̃(k)

λ1(k)
(28)

G̃ QQ(k) = B̃(k)

λ1(k)
+

1 − B̃(k)

λ2(k)
(29)
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where λ1(k) and λ2(k) are the eigenvalues of the matrix of the direct correlation functions C̃AB

and

B̃(k) = 1 − �̃N Q(0)k4

16π2q4
+ O(k6). (30)

It is easily shown that at small k

λ2(k) = (β − βc)�̃N N (0) + ak2 + O(k4), (31)

with

a = −1

2

∂2cHS(ρc, k)

∂k2

∣∣∣∣
k=0

− βc�̃N N (0)b2
N N − βc(�̃N Q(0))2

4πq2
. (32)

In the above equation, cHS is the ordinary direct correlation function connected to CHS by
C̃HS(k) = c̃HS(k)− 1/ρ. Therefore, along the critical isochore above Tc we have

G̃ N N (k) = 1

(β − βc)�̃N N (0)

1

1 + ξ2k2
for k → 0, (33)

where the squared density–density correlation length is given by

ξ2 = a

(β − βc)�̃N N (0)
. (34)

The positivity of ξ2, i.e. the positivity of a, implies some restrictions on the various parameters
of the model. As expected, the critical exponent of the correlation length is ν = 1/2 and the
Fisher exponent η = 0. In the case where q = 0 and �R = 0 one recovers for a the result
of [14].

Finally, the behaviour of λ1(k) for k → 0 is found to be

λ1(k) = 4πβq2

k2

(
1 +

k2

κ2
D

)
+ O(k4), (35)

where we have defined an effective squared Debye number as

κ2
D = κ2

D

1 + β�̃QQ(0)ρZ
, (36)

κ2
D = 4πρβq2 Z being the usual squared Debye number. Hence, once again along the critical

isochore we get for G̃ QQ(k) the expression

G̃ QQ(k) = k2

4πβq2

(
1 − k2

κ2
D

)
+
(�̃N Q(0))2k4

16π2q4

1

a(k2 + ξ−2)
+ O(k6), (37)

which is valid far from and at the CP at small k.
Some comments are in order. Firstly, away from the CP (β �= βc) we have G̃ QQ(k) ∼

k2/4πβq2, which means that both SL rules are satisfied. This is in agreement with the results
obtained in [17] for the case when the direct correlation function is given by (16). In the
general case, at the CP (β = βc, ρ = ρc), ξ−1 = 0 and we have for G̃ QQ(k)

G̃ QQ(k) = k2

(
1

4πβq2
+
(�̃N Q(0))2

16π2q4

1

a

)
+ O(k4). (38)

As is seen from the above equation G̃ QQ(k = 0) = 0 and thus the first SL rule is satisfied at
the CP. By contrast, G̃ QQ(k �= 0) is proportional to k2 but with a coefficient that is not correct
to ensure screening. Hence, the second SL rule is violated at the CP.
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However, in the special case of a symmetric model such that �R
αα = �R

αβ and thus

�̃N Q(k) ≡ 0 we have the simple result

G̃ QQ(k) = ρZk2

k2 + κ2
D

(for all k), (39)

and, in this case, the second SL rule is satisfied even at the CP.
Our last comment will be for the charge–density correlation function, which along the

critical isochore above Tc behaves as

G̃ N Q(k) = − �̃N Q(0)

4πq2

k2

a(k2 + ξ−2)
+ O(k4) (40)

at small k. Therefore, for the asymmetric model G̃ N Q(k) ∼ k2 away from the CP when k → 0
and G̃ N Q(k = 0) = −�̃N Q(0)/(4πq2a) �= 0 at the CP. Note that for the symmetric model
G̃ N Q ≡ 0.

In summary, we have studied density–density, charge–charge and charge–density
correlation functions for the charge- and size-asymmetric model far from and at the gas–liquid
CP within the framework of the RPA and have shown that in a general case the second-moment
SL rule is satisfied away from the CP and is not satisfied at the CP. In the particular case of
the symmetrical model both SL rules are satisfied at the CP. It is worth noting that a more
comprehensive study of the criticality in ionic fluids requires the fluctuations to be taken into
consideration at the level higher than the RPA. This issue as well as a detailed analysis of an
effect of the charge and size asymmetry on the phase behaviour will be presented elsewhere.

Note added in proof. We thank the referee for very useful comments as well as for bringing reference [18] to our
attention at the stage of proof reading. In particular case Z = 1 our results for the correlation functions are in qualitative
agreement with the expressions derived in [18]. However, we cannot agree with the interpretation proposed in this
paper (i.e. an effective reduction of the ionic concentration in the system) for the explanation of an increase of the
effective screening length at the CP. Our preliminary study shows that the second-moment SL rule is verified even at
the CP if the fluctuation effects are taken properly into account.
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